
Ali Shokri Statement of Research Interest

My research interest lies in automated software engineering, focusing on improving devel-
oper productivity and code quality. Specifically, my work centers around program analysis and
synthesis, in conjunction with software architecture, security, and formal methods. With the
current trend in LLM-based software engineering, we expect a resurgence of formal approaches
for verifying generative AI outputs. Building upon my previous and current research, my future
work will blend formal methods with ML-supported program analysis and synthesis to generate
formally verified results from incomplete specifications.

Previous Research Experience
During my bachelor’s and masters studies, I acquired a foundation in software engineering the-
ories. Over fourteen years in the software industry, I gained practical experience and valuable
insights into the challenges faced by software engineers. This ranged from delays in the software
production process to mismatches between desired specifications of the software and actual im-
plementations. These experiences fueled my passion for developing effective solutions to help
programmers create correct and trustworthy software. Throughout my Ph.D., I explored vari-
ous aspects of automated software engineering, including program analysis and comprehension,
repository mining, API recommendation, formal methods, and, significantly, program synthesis.

Software Security: In the area of software security, I focused on identifying legacy security
flaws from a software architecture perspective. This involved exploring software quality attribute
traceability in legacy systems, software certification, and security tactics detection [3]. I also
delved into the use of ML models for detecting security issues in the absence of correct usage of
architectural tactics [1].

Program Analysis: Moreover, I concentrated on addressing challenges in code quality and
correct implementation through techniques such as dataflow and control-flow analysis. My
approach involved inter-procedural analysis, identification of incorrect tactic implementations,
and providing API recommendations for fixing these issues [7, 6]. Furthermore, to address an
important issue of the state-of-the-art call-graph constructors when facing dynamic features of
programming languages, we developed an approach that can create sound call-graphs for object
serialization [2].

Program Synthesis: Advancing to program synthesis, I developed an inter-procedural ap-
proach that goes beyond providing API recommendations. This approach overcomes the chal-
lenge of synthesizing inter-related, and yet discrete, code snippets that implement a scenario
and automatically integrating it into an existing code base [4, 5]. This effort was recognized
as the first-place award winner at the ASE21 research competition. This research elaborates
the importance of (semi) formal synthesis, even in the era of blooming of ML-based automated
programming.

In addition to my Ph.D. research, I undertook two research internships at Google and Palo-
Alto Research Center (PARC), contributing to projects related to program analysis and software
synthesis, with a focus on ML-based generative models and evolutionary search-based synthesis.
These efforts resulted in two inventions (pending patents) and two papers (to be submitted).

Current Research
Expanding my research to formal methods, I believe this domain will become crucial due to
the widespread use of ML-based techniques generating unverified outputs. As a postdoctoral
researcher, I am currently investigating formally verified pointer analysis and formal-based soft-
ware compartmentalization. The former aims to perform binary analysis, identify pointers, and

Ali Shokri Statement of Research Interest

formally prove their attributes, while the latter focuses on leveraging formal methods to mitigate
CVE exploits via software compartmentalization.

Future Research
Based on my past work, knowledge, and research experience, I plan to pursue three main lines
of research in the future.

Formally Verified ML-supported Inter-procedural Program Synthesis: The landscape
of automated programming and program synthesis holds great promise, with various branches
of the field gaining attention. However, I identified a significant gap in supporting programmers
in real-life scenarios. Most existing approaches focus on intra-procedural code synthesis, where
a synthesizer generates a block of code based on a given specification. In contrast, real-life pro-
gramming demands inter-procedural code synthesis capable of constructing interrelated blocks
added to different parts of the program for specific use-cases or scenarios.

During my Ph.D. research, I developed an approach to inter-procedurally implement tactic
code snippets and seamlessly integrate them into the program; this represents a semi-formal
approach. This involved addressing the challenges of real-life programming scenarios. Presently,
my focus is on advancing this work with pure formal method-based approaches. I am devel-
oping methods that leverage formal techniques to enhance the precision and reliability of code
synthesis.

Looking ahead, I envision leveraging the synergy of formal methods and language models in
two key directions: (i) generating required specifications from under-specified design/specifications
and (ii) establishing a cycle of code generation and formal verification. This involves extracting
precise specifications from loosely defined requirements, ensuring a robust foundation for sub-
sequent code generation. Furthermore, I am exploring the integration of language models to
enhance the efficiency of the code generation process.

Drawing on the knowledge and experience gained during my research internship at Google,
specifically in LLM-based synthesizers, I aim to make this approach fully functional in the next 5
years, bridging the gap between formal methods and practical, real-world software development.

Large-scale Code Repair: Building on my Ph.D. research, I am set to embark on a hybrid
solution that merges formal and ML-based approaches for large-scale code repair. This initiative
addresses the limitations in existing state-of-the-art code repair methods. These methods often
demand explicit and highly specific input specifications, making them less robust in accommo-
dating variations in a given code base.

Continuing from my prior work, I aim to develop a hybrid solution that seamlessly combines
the precision of formal methods with the adaptability of ML-based approaches. This endeavor
involves identifying sections of code in need of repair, automatically generating the required
patches, and seamlessly integrating these patches into the existing codebase. Importantly, this
approach extends beyond mere bug identification and repair at the method level, offering a
comprehensive solution for large-scale code maintenance and enhancement.

Self-reconfigurable Software: Another direction for my research over the next 5-10 years is
the development of a framework enabling self-reconfigurable software systems. While existing
efforts focus on separate aspects like API migration, code repair, and ML-based code transition,
I believe there’s potential to consolidate these endeavors into a unified framework.

My vision is to create a generalized approach that learns from various software evolution
examples, offering a holistic solution to software self-reconfiguration. This framework aims
to facilitate automatic updates in software systems based on their evolving environment. By
integrating insights from API migration, code repair, and ML-based code transition, I anticipate
establishing a unified methodology that streamlines software evolution.

Ali Shokri Statement of Research Interest

This direction aligns with the overarching goal of creating adaptive, self-evolving software
systems that can seamlessly and autonomously adapt to changing requirements and environ-
mental conditions. As I delve into this area, I anticipate contributing to the broader landscape
of software engineering and paving the way for more resilient and dynamic software systems.

Research Grant Proposal
In addition to contributing to grant proposals for NSF, DARPA, and DoE during my Ph.D.,
I played a crucial role in submitting a substantial $7M DARPA grant proposal (BAA number
HR001123S0039) where I served as the main Principal Investigator (PI). This collaborative effort
involved partnerships with other esteemed universities such as the University of Notre Dame
and prominent international research institutions like SRI.

My experience in writing grant proposals has provided me with valuable insights into ef-
fectively articulating research objectives, methodologies, and expected outcomes. Leading the
DARPA proposal showcased my ability to navigate the complexities of interdisciplinary research,
fostering synergies between institutions and researchers.

As I transition into the next phase of my academic journey, I am eager to continue contribut-
ing to the writing of grant proposals for different funding agencies. Through these proposals,
I aim to secure support for innovative research projects, leveraging my expertise in automated
software engineering, formal methods, and the integration of ML-based approaches into software
development. Collaborating with colleagues and researchers from diverse backgrounds, I seek to
lead impactful research projects that address critical challenges in the field.

References

[1] A. Okutan, A. Shokri, V. Koscinski, M. Fazelinia, and M. Mirakhorli, “A novel approach to
identify security controls in source code,” arXiv preprint arXiv:2307.05605, 2023.

[2] J. Santos, M. Mirakhorli, and A. Shokri, “Sound call graph construction for java object
deserialization,” arXiv preprint arXiv:2311.00943, 2023.

[3] J. C. Santos, A. Shokri, and M. Mirakhorli, “Towards automated evidence generation for
rapid and continuous software certification,” in 2020 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW). IEEE, 2020, pp. 287–294.

[4] A. Shokri, “A program synthesis approach for adding architectural tactics to an existing
code base,” in 2021 36th IEEE/ACM International Conference on Automated Software En-
gineering (ASE). IEEE, 2021, pp. 1388–1390.

[5] ——, “Inter-procedural program synthesis for automatic architectural tactic implementa-
tion,” Ph.D. dissertation, Rochester Institute of Technology, 2023.

[6] A. Shokri and M. Mirakhorli, “Arcode: A tool for supporting comprehension and imple-
mentation of architectural concerns,” in 2021 IEEE/ACM 29th International Conference on
Program Comprehension (ICPC). IEEE, 2021, pp. 485–489.

[7] A. Shokri, J. C. Santos, and M. Mirakhorli, “Arcode: Facilitating the use of application
frameworks to implement tactics and patterns,” in 2021 IEEE 18th International Conference
on Software Architecture (ICSA). IEEE, 2021, pp. 138–149.

